Classification and Grading of Arecanut Using Texture Based Block-Wise Local Binary Patterns
Main Article Content
Abstract
Arecanut is a commercial crop typical to high rain fall regions. Arecanut has economic, cultural and medicinal importance, and is categorized into different types depend upon the region which grow and market it consumes.In this paper, an attempt towards grading of Arecanut images is proposed. The proposed approach makes use of global textural feature viz., Local Binary Pattern for feature extraction. Initially, an image is divided into k number of blocks. Subsequently, the texture feature is extracted from each k blocks of the image. The k value is varied and has been fixed empirically. For experimentation purpose, the Arecanut dataset is created using 4 different classes and experimentation is done for whole image and also with different blocks like 2, 4 and 8. Grading of Arecanut is done using Support Vector Machine classifier. Finally, the performance of the grading system is evaluated through metrics like accuracy, precision, recall and F –measure computed from the confusion matrix. The experimental results show that most promising result is obtained for 8 block of the image.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.