Recognition and Digitization of Handwritten Text using Histogram of Gradients and Artificial Neural Network
Main Article Content
Abstract
Handwriting recognition is one of the most persuasive and interesting projects as it is required in many real-life applications such as bank-check processing, postal-code recognition, handwritten notes or question paper digitization etc. Machine learning and deep learning methods are being used by developers to make computers more intelligent. A person learns how to execute a task by learning and repeating it over and over before it memorises the steps. The neurons in his brain will then be able to easily execute the task that he has mastered. This is also very close to machine learning. It employs a variety of architectures to solve various problems. Handwritten text recognition systems are models that capture and interpret handwritten numeric and character data from sources such as paper documents and photographs. For this application, a variety of machine learning algorithms were used. However, several limitations have been found, such as a large number of iterations, high training costs, and so on. Even though the other models have given impressive accuracy, it still has some drawbacks. In an unsupervised way, the Artificial Neural Network is used to learn effective data coding. For recognising real-world data, we built a model using Histogram of Oriented Gradients (HOG) and Artificial Neural Networks (ANN).
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.