A Research on Online Fake News Detection using Machine Learning Techniques
Main Article Content
Abstract
With the advent of modern day journalism and social media at peak, fake news may spread faster around the world. Therefore, it is important to detect the fake news and considered as a popular research topic among the community.Any changes on a particular news articles includes editorial, news report, expose, etc are predicted by using Fake News Detection (FND) techniques. Nowadays, fake news is defined as one of the major threats to economies, democracy and journalism.But, the reliability identification of online information is the most important difficult process in FND, which leads the researchers and technical developers to design an efficient techniques for improving the FNDs' performance. In this study, a discussion for detecting fake news on social media, including different kinds of news platforms, fake news characterizations, different types of data for fake news and finally, existing algorithms from a data mining perspective. In addition, the study also presents the open research problems for FND on social media.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.