Identification and Classification of Lung Nodules Using Neural Networks
Main Article Content
Abstract
Lung cancer is a serious health concern, which is also one of the major types of cancer that has a profound impact on the overall cancer mortality rates. The detection of lung cancer nodules is quite a challenge as the major challenge is the structure of the cancer nodules; here the cells are imbricated with each other. The prediction and classification of lung cancer is done by applying digital image processing techniques to the acquired input images of the nodules. This methodology also aids early detection which in turns reduces the criticality of the condition and provides scope for early intervention and treatment. The prediction methodology involves extracting several features of the lung cancer cell and then applying pattern-based prediction techniques. In recent times, owing to the fact that the time and execution parameters are very important aspects to detect the abnormality of the fast-spreading cancer cells, digital image processing techniques are being widely deployed. The fundamental factors of this research are the quality of image assessment and the precision of feature extraction. Following our proposed methodology, a clear picture of the region of interest is obtained which acts as a basis for the feature extraction process. Here an overall evaluation of the digital image processing techniques used by previous scholars for the finding and classification of lung cancer nodules have also been emphasised.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.