Information Set based Local Directional Number for Face Recognition
Main Article Content
Abstract
Many algorithms were proposed on face recognition based on the Holistic method, Feature-based method, and also more recently based on local texture patterns. Few local texture patterns utilize the positions of the intensity values like Local Directional Pattern and Local Directional number for obtaining the knowledge (features). This paper proposes the new features based on positions of intensity values and the intensity values in the patch of an image to compute membership function value. The information set concept is used to compute the features that are non-overlapping blocks to restrict the number of features. The proposed method is tested with benchmark databases like ORL and Sheffield and Yale. The classification of the subjects was done with Support Vector Machine (SVM) and K-nearest neighbour Classifier to validate the results. Bio-metric performance curves like Receiver operating Characteristics (ROC) and K-fold validation test is performed. The experimental result shows that the accuracy of recognition has improved over the previously mentioned methods.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.