Guava Leaf Disease Classification Using Support Vector Machine
Main Article Content
Abstract
Agribusiness is the main energy to develop nourishments, raising a human's life and creatures by delivering wanted plant items. In harvesting of things like rice or guava, India is one among the biggest players. Recognizable proof of the plant diseases is the way to forestalling the misfortunes in the yield and amount of the item. Wellbeing checking and disease discovery on plant is extremely basic for supportable horticulture. It is hard to screen the plant maladies physically. It requires enormous measure of work, ability in the plant diseases, and furthermore require the over the top preparing time. Thus, image handling is utilized for the discovery of plant diseases. This work proposes a philosophy for identifying guava leaf maladies early and precisely utilizing image preparing methods and Support Vector Machine (SVM). The proposed framework comprises of following stages like Image pre-preparing, Image segmentation, cluster of an image utilizing k-means, extraction using Gray Level Co-Occurrence Matrix (GLCM). Then the classification of the image is carried out with SVM classifier. In contrasted with existing framework, the proposed framework essentially recognizes the plant leaf disease at an early sickness and improve the accuracy to 98.17%.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.