Ensemble Distributed Search-FSGM-CRD Compressed Cache Algorithm for Large Datasets
Main Article Content
Abstract
Frequent sub-graph mining (FSM) is a alternative of frequent pattern mining where patterns are graphs. Among the entities, graph based representation is utilized to effectively represent the complex relationships. Various graph mining techniques are developed from the past many years, most the challenging tasks in graph mining is frequent sub-graph mining (FSM). In FSM many of the existing algorithms consider only graph based structure, the relationships based on entities involved and strength is not considered. It is very important to handle the complex and huge data. There is very huge demand in distributed computational approaches. In this paper, An Ensemble Distributed Search-FSGM-CRD Compressed Cache Algorithm is developed and implemented to find frequent sub graphs
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.