V-DaT: A Robust method for Vehicle Detection and Tracking
Main Article Content
Abstract
Vision-based traffic surveillance has been one of the most promising fields for improvement and research. Still, many challenging problems remain unsolved, such as addressing vehicle occlusions and reducing false detection. In this work, a method for vehicle detection and tracking is proposed. The proposed model considers background subtraction concept for moving vehicle detection but unlike conventional approaches, here numerous algorithmic optimization approaches have been applied such as multi-directional filtering and fusion based background subtraction, thresholding, directional filtering and morphological operations for moving vehicle detection. In addition, blob analysis and adaptive bounding box is used for Detection and Tracking. The Performance of Proposed work is measured on Standard Dataset and results are encouraging.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.