Dense Feature Based Face Recognition from Surveillance Video using Convolutional Neural Network
Main Article Content
Abstract
Face Recognition is a field of identifying the person from the facial features and has wide application range in security, human computer interactions, finance etc. In recent years, many researchers have developed different algorithms to identify the Faces from various illumination variations and Pose variation, but these two problems remain unsolved in Face Recognition (FR) field.
The Local Binary Pattern (LBP) has already proved its robustness in illumination variation. This paper proposes a four-patch Local Binary Pattern based FR utilizing Convolutional Neural Network (CNN) for identifying the Facial images from various illumination conditions and Pose variation.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.