ECG Denoising Using Artificial Neural Networks and Complete Ensemble Empirical Mode Decomposition
Main Article Content
Abstract
Electrocardiogram (ECG) is a documentation of the electrical activities of the heart. It is used to identify a number of cardiac faults such as arrhythmias, AF etc. Quite often the ECG gets corrupted by various kinds of artifacts, thus in order to gain correct information from them, they must first be denoised. This paper presents a novel approach for the filtering of low frequency artifacts of ECG signals by using Complete Ensemble Empirical Mode Decomposition (CEED) and Neural Networks, which removes most of the constituent noise while assuring no loss of information in terms of the morphology of the ECG signal. The contribution of the method lies in the fact that it combines the advantages of both EEMD and ANN. The use of CEEMD ensures that the Neural Network does not get over fitted. It also significantly helps in building better predictors at individual frequency levels. The proposed method is compared with other state-of-the-art methods in terms of Mean Square Error (MSE), Signal to Noise Ratio (SNR) and Correlation Coefficient. The results show that the proposed method has better performance as compared to other state-of-the-art methods for low frequency artifacts removal from EEG.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.