Design and Implementation of Missing Data Classification Technique for IoT Applications Using Artificial Intelligence
Main Article Content
Abstract
The combination of various sensors with different data methods is a common technique used to increase precision in the classification of IoT health data. However, for even the assessment outcomes, all modalities are barely available and this scarcity of evidence poses significant barriers to multimodal education. Driven by recent developments in deep education, we are providing a cross-neural network for the segmentation of the IoT Health Data Classification, which is trained on data modalities not all available during trials. In IoT Health Data Classification, we train our architecture with a cost function that is especially tailored to unbalanced classes. We are providing the device with a benchmark data set with incomplete data. Assuming that they are not present in the research process, our methodology goes beyond both the CNN training and the collection of two CNNs trained in the missing modality by utilising time data
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.