Prediction of Climate Change using SVM and Naïve Bayes Machine Learning Algorithms
Main Article Content
Abstract
Various reasons are there in failures of Intergovernmental Panel on Climate Change (IPCC) simulation model for prediction of climate change. For the better understanding of IPCC model’s failures by researchers, an improvement is qualitative and quantitative analysis is required and to be implemented. We come across a continuous crashes in simulation of Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4), while measuring the impact of ocean model parameter uncertainties on weather simulations, during the period of uncertainty quantification (UQ) ensemble. This manuscript analyse the different machine learning algorithms, such as, Random forest, Linear Regression, k-means and naïve-bayes algorithms. From machine learning, a quality classifier called support vector machine (SVM) classification is used to predict and quantify the failures probability as a function of the values of POP2 parameters. Apart from quantification and prediction, this method performs a better understanding in simulation crashes in other complex geo-scientific models.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.