Extension of Connecting Formulas on Hypergeometric Function

Main Article Content

Bhadra Raj Tripathi

Abstract

The Hypergeometric series is the extension of the geometric series and the Confluent Hypergeometric Function is the solution of the Hypergeometric Differential Equation. Kummer has developed six solutions for the differential equation and twenty connecting formulas. The connecting formula consist of a solution expressed as the combination of two other solutions. Further extension was done by Poudel et al. This research work has extended the nine connecting formulas obtained by Poudel et al. to obtain the other nine solutions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Bhadra Raj Tripathi. (2025). Extension of Connecting Formulas on Hypergeometric Function. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 16(1). Retrieved from https://turcomat.org/index.php/turkbilmat/article/view/15233
Section
Research Articles

References

Bailey, W. N. (1964). Generalized hypergeometric series (No. 32). Stechert- Hafner service agency.

Barnes, E. W. (1908). A new development of the theory of the hypergeometric functions. Proceedings of the London Mathematical Society, 2(1), 141-177.

Ciftja, O. (2020). Detailed solution of the problem of Landau states in a symmetric gauge. European Journal of Physics, 41(3), 035404.

Liu, G. R., Han, X., & Lam, K. Y. (2001). An integration technique for evaluating confluent hypergeometric functions and its application to functionally graded materials. Computers & Structures, 79(10), 1039-1047.

Mathews Jr, W. N., Esrick, M. A., Teoh, Z., & Freericks, J. K. (2021). A physicist's guide to the solution of Kummer's equation and confluent hypergeometric functions. arXiv preprint arXiv:2111.04852.

Morita, T., & Sato, K. I. (2016). Kummer’s 24 solutions of the hypergeometric differential equation with the aid of fractional calculus. Advances in Pure Mathematics, 6(3), 180-191.

Olver, F. J., Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain,(2022) M.A., NIST Digital Library of Mathematical Functions, URL http://dlmf.nist.gov

Oros, G. I. (2021). New conditions for univalence of confluent hypergeometric function. Symmetry, 13(1), 82.

Poudel, M. P., Harsh, H. V., & Pahari, N. P. (2023). Laplace Transform of Some Hypergeometric Functions. Nepal Journal of Mathematical Sciences, 4(1).

Poudel, M. P., Harsh, H. V., Pahari, N. P., & Panthi, D. (2023). Kummer’s theorems, popular solutions and connecting formulas on Hypergeometric function. Journal of Nepal Mathematical Society, 6(1), 48-56.

Poudel, M. P., Harsh, H. V., Pahari, N. P., & Panthi, D. (2023). Kummer’s theorems, popular solutions and connecting formulas on Hypergeometric function. Journal of Nepal Mathematical Society, 6(1), 48-56.

Progri, I. F. (2021). Confluent hypergeometric function irregular singularities. J. Geol. Geoinfo. Geointel, 2021.

Rainville, E. D. (1960). Special functions. Macmillan.

Rao, K. S., & Lakshminarayanan, V. (2018). Generalized Hypergeometric Functions: transformations and group theoretical aspects. IOP Publishing.

Schweizer,W.,(2021). Special Functions in Physics with MATLAB, Springer Switzerland, Charn, Switzerland.

Slater, L. J. (1966). Generalized hypergeometric functions. Cambridge university press.

Weisstein, E. W. (2003). Confluent hypergeometric function of the first kind. https://mathworld. wolfram. com/.

Weisstein, E. W. (2003). Confluent hypergeometric function of the second kind. https://mathworld. wolfram. com/. 19. https://dlmf.nist.gov/15.10#i