NgRx and RxJS in Angular: Revolutionizing State Management and Reactive Programming

Main Article Content

Nikhil Kodali

Abstract

In the realm of modern web development, Angular has established itself as a robust framework for building dynamic applications. Central to enhancing Angular's capabilities are two pivotal libraries: NgRx and RxJS. NgRx provides a Redux-inspired state management architecture, leveraging RxJS to handle asynchronous data flows through Observables. This paper explores how NgRx and RxJS synergistically enable developers to manage application state predictably and efficiently, promoting scalability and maintainability. By examining the principles of unidirectional data flow and reactive programming, we highlight the indispensability of these tools in modern Angular development.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Kodali, N. . (2021). NgRx and RxJS in Angular: Revolutionizing State Management and Reactive Programming. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 5745–5755. https://doi.org/10.61841/turcomat.v12i6.14924
Section
Research Articles

References

Oddie, A., Hazlewood, P., Blakeway, S., & Whitfield, A. (2010). "Introductory problem solving and programming: Robotics versus traditional approaches." ITALICS, 9(2), 1–11.

Druin, A., & Hendler, J. A. (2000). Robots for kids: Exploring new technologies for learning. Morgan Kaufmann.

Gandy, E. A., Bradley, S., Arnold-Brookes, D., & Allen, N. R. (2010). "The use of LEGO Mindstorms NXT robots in the teaching of introductory Java programming to undergraduate students." ITALICS, 9(1), 2–9.

Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber, M., Schep, M., Barnes, D. J., & Hollingsworth, R. G. (2003). "A road map for teaching introductory programming using LEGO Mindstorms robots." SIGCSE Bulletin, 35(2), 191–201.

Cleary, A., Vandenbergh, L., & Peterson, J. (2015). "Reactive game engine programming for STEM outreach." In SIGCSE. ACM, 628–632.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). "The TeachScheme! project: Computing and programming for every student." Computer Science Education, 14(1), 55–77.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). "ROS: An open-source Robot Operating System." OSS@ICRA, 3(3.2).

Diprose, J. P., MacDonald, B. A., & Hosking, J. G. (2011). "Ruru: A spatial and interactive visual programming language for novice robot programming." In VL/HCC. IEEE, 25–32.

Casañ, G. A., Cervera, E., Moughlbay, A. A., Alemany, J., & Martinet, P. (2015). "ROS-based online robot programming for remote education and training." In ICRA. IEEE, 6101–6106.

Angulo, I., García-Zubía, J., Hernández-Jayo, U., Uriarte, I., Rodríguez-Gil, L., Orduña, P., & Pieper, G. M. (2017). "RoboBlock: A remote lab for robotics and visual programming." In exp.at. IEEE, 109–110.

Masum, M. H., Rifat, T. S., Tareeq, S. M., & Heickal, H. (2018). "A framework for developing graphically programmable low-cost robotics kit for classroom education." In ICETC. ACM, 22–26.

Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D. C., & Franklin, D. (2018). "Evaluating CoBlox: A comparative study of robotics programming environments for adult novices." In CHI. ACM, 366:1–366:12.

Marghitu, D., & Coy, S. (2015). "Robotics rule-based formalism to specify behaviors in a visual programming environment." In B&B@VL/HCC. IEEE, 45–47.

Weintrop, D. (2019). "Block-based programming in computer science education." Communications of the ACM, 62(8), 22–25.

Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). "Block-based versus text-based programming environments on novice student learning outcomes: A meta-analysis study." Computer Science Education, 29(2–3), 177–204.

Bainomugisha, E., Carreton, A. L., Cutsem, T. V., Mostinckx, S., & De Meuter, W. (2013). "A survey on reactive programming." ACM Computing Surveys, 45(4), 52:1–52:34.