Role of Machine Learning Approach for Detection and Classification of Diseases in Cotton Plant
Main Article Content
Abstract
Qualitative and quantitative agricultural production leads to economic benefits which can be achieved by periodic monitoring of crop, detection and prevention of crop diseases and insects. Quality of crop production is reduced by pest infection and crop diseases. Existing measures involves manual detection of cotton diseases by farmers and experts which requires regular monitoring and detection manifest at middle to later stage of infection which causes many disadvantages such as becoming too late for diseases to be cured. Lack of early detection of diseases causes the diseases to be spread in nearby crops in the field and also spraying of pesticides is done on entire field for minimizing the infection of disease. The main goal of proposed research topic is to find the solution to the agriculture problem which involves detecting disease in cotton plant at early stage and classify the disease based on symptoms. Early detection of disease at an early stage prevent it from spreading to another area and preventive measures can be taken by farmers by spraying pesticides to control its growth which helps to increase the cotton yield production. Automatic identification of the different diseases affecting cotton crop will give many benefits to the farmers so that time, money will be saved and also gives healthy life to the crop. The contribution of this paper is to present the machine learning approach used for cotton crop disease diagnosis and classification.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.