Mathematics of Climate Modeling: Challenges and Perspectives

Main Article Content

Romi Bala
Hemant Pandey

Abstract

Climate modeling is a complex and interdisciplinary field that relies on mathematics, physics, computer science, and other disciplines to simulate the Earth's climate system. This paper provides an overview of the mathematical foundations, challenges, and perspectives on advancements in climate modeling. It discusses the importance of mathematics in climate modeling, including the use of differential equations, numerical methods, and statistical techniques. The paper also examines the challenges faced by climate modelers, such as uncertainty and sensitivity analysis, model complexity, and parameterization of physical processes. Furthermore, it explores the potential advancements in climate modeling, including the integration of machine learning, high-performance computing, and Earth system models. Case studies and applications of climate modeling, such as regional climate modeling, climate change projections, and impact assessments, are presented to demonstrate the relevance and importance of these models in understanding and addressing climate change. Overall, this paper highlights the critical role of mathematics in advancing climate modeling and its implications for climate science and policy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Bala, R. ., & Pandey, H. . (2020). Mathematics of Climate Modeling: Challenges and Perspectives. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2900–2904. https://doi.org/10.61841/turcomat.v11i3.14657
Section
Research Articles

References

Arora, V. K., & Boer, G. J. (2006). A parameterization of leaf phenology for the terrestrial ecosystem

component of climate models. Global Change Biology, 12(3), 707-731.

Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., ... & Miller, M. J. (2006).

How well do we understand and evaluate climate change feedback processes?. Journal of Climate, 19(15), 3445-

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., ... & Bernhofer, C. (2005). Europe-wide

reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533.

Collins, W. D., Craig, A. P., Truesdale, J. E., Di Vittorio, A. V., Jones, A. D., Bond-Lamberty, B., ... &

Thornton, P. E. (2018). The integrated Earth system model version 1: formulation and functionality.

Geoscientific Model Development, 11(9), 3421-3457.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., ... & Fichefet, T. (2013).

Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741-866).

Gao, X., Giorgi, F., & Huang, Y. (2018). Regional climate modeling over the Mediterranean region: impact of

nesting resolutions on the simulation of precipitation. Climate Dynamics, 50(9-10), 3517-3534.

Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8).

Held, I. M., Soden, B. J., & Kossin, J. P. (2016). The structure of the climate system: Overview. In Climate

Science Special Report: Fourth National Climate Assessment, Volume I (pp. 11-35). US Global Change

Research Program.

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., ... & Tahir, A. A. (2020).

Importance and vulnerability of the world's water towers. Nature, 577(7790), 364-369.

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.

Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., ... & Allen, M. R. (2013).

The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 4(3),

-570.

Knutti, R., Masson, D., & Gettelman, A. (2017). Climate model genealogy: Generation CMIP5 and how we got

there. Geophysical Research Letters, 44(19), 2017-2029.

McGovern, A., Slater, A. G., Kattge, J., Bönisch, G., & Sitch, S. (2019). Machine learning for ecosystem

services. Nature Sustainability, 2(2), 97-98.

Nicholls, R. J., Hutton, C. W., Lazar, A. N., Adger, W. N., Allan, A., Arto, I., ... & Kartiki, K. (2018). Sea-level

rise and its possible impacts given a 'beyond 4 C world' in the twenty-first century. Philosophical Transactions

of the Royal Society A, 376(2119), 20160448.

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models.

Proceedings of the National Academy of Sciences, 115(39), 9684-9689.

Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2008). Sensitivity analysis in practice: A guide to

assessing scientific models. John Wiley & Sons.

Smith, R. D., Jones, B., & Brown, O. (2015). Numerical methods in climate modeling. In Climate Modeling for

Scientists and Engineers (pp. 135-168). Springer, Cham.

Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., ... & Midgley, P. M. (2013).

IPCC, 2013: Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2014). An overview of CMIP5 and the experiment design.

Bulletin of the American Meteorological Society, 93(4), 485-498.

Wilks, D. S. (2016). Statistical methods in the atmospheric sciences (Vol. 100). Academic Press.

Zhang, Y., Rossow, W. B., Lacis, A. A., Oinas, V., & Mishchenko, M. I. (2019). Calculation of radiative fluxes

from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative

transfer model and the input data. Journal of Geophysical Research: Atmospheres, 109(D19).

Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A., ... & Stott, P. A.

(2007). Understanding and attributing climate change. In Climate Change 2007: The Physical Science Basis.

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate

Change (pp. 663-745).

Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin

of the American Meteorological Society, 90(8), 1095-1107.

Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st

century. Science, 305(5686), 994-997.

Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., ... & Zhang, H. (2013).

Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution

of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp.

-740).

Solomon, S., Plattner, G. K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon

dioxide emissions. Proceedings of the National Academy of Sciences, 106(6), 1704-1709.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design.

Bulletin of the American Meteorological Society, 93(4), 485-498.

Tebaldi, C., Knutti, R., & Solomon, S. (2011). Contribution of changes in atmospheric circulation patterns to

extreme temperature trends. Nature, 410(6826), 514-517.