Tunable Sub Threshold Logic Design Through Adaptive Feedback Equalization
Main Article Content
Abstract
An Efficient tunable subthreshold logic circuit planned by utilizing adaptive feedback equalization circuit. This circuit utilized in the Ladner Fischer adder. This circuit utilized in a successive advanced logic circuit to moderate the cycle variety impacts and lessen the prevailing spillage energy part in the subthreshold area. Feedback equalizer circuit changes the switching edge of its inverter. It depends on the output of the flip-flop in the past cycle to lessen the charging and releasing season of the flip-flop's information capacitance. Besides, the more modest info capacitance of the feedback equalizer lessens the switching season of the last door in the combinational logic block. Likewise present point by point energy-performance models of the adaptive feedback equalizer circuit.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.