A NOVEL CRYPTOCURRENCY PRICE ANALYSIS WITH ARTIFICIAL INTELLIGENCE
Main Article Content
Abstract
Cryptocurrency is playing an increasingly important role in reshaping the financial system due to its growing popular appeal and mechant acceptance. While many people are making investments in Cryptocurrency, the dynamical features, uncertainty, the predictability of Cryptocurrency are still mostly unknown, which dramatically risk the investments. It is a matter to try to understand the factors that infiuence the value formation. In this study, we use advanced artificial intelligence frameworks of fully connected Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) Recurrent Neural Network to analyse the price dynamics of Bitcoin, Etherum, and Ripple. We find that ANN tends to rely more on long-term history while LSTM tends to rely more on short-term dynamics, which indicate the efficiency of LSTM to utilise useful information hidden in historical memory is stronger than ANN. However, given enough historical information ANN can achieve a similar accuracy, compared with LSTM. This study provides a unique demonstration that Cryptocurrency market price is predictable. However, the explanation of the predictability could vary depending on the nature of the involved machine-learning model.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.