PREDICTION OF AIR POLLUTION USING MACHINE LEARNING
Main Article Content
Abstract
Due to human activities, industrialization and urbanization air is getting polluted. The major air pollutants are CO, NO, C6H6,etc. The concentration of air pollutants in ambient air is governed by the meteorological parameters such as atmospheric wind speed, wind direction, relative humidity, and temperature. Earlier techniques such as Probability, Statistics etc. were used to predict the quality of air, but those methods are very complex to predict, the Machine Learning (ML) is the better approach to predict the air quality. With the need to predict air relative humidity by considering various parameters such as CO, Tin oxide, nonmetallic hydrocarbons, Benzene, Titanium, NO, Tungsten, Indium oxide, Temperature etc, approach uses Linear Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest Method (RF) to predict the Relative humidity of air and uses Root Mean Square Error to predict the accuracy
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.