PREDICTION APPROACH AGAINST DDOS ATTACK BASED ON MACHINE LEARNING MULTICLASSFIER
Main Article Content
Abstract
DDoS attacks, also known as distributed denial of service (DDoS) attacks, have emerged as one of the most serious and fastest-growing threats on the Internet. Denial-of-service (DDoS) attacks are an example of cyber attacks that target a specific system or network in an attempt to render it inaccessible or unusable for a period of time. As a result, improving the detection of diverse types of DDoS cyber threats with better algorithms and higher accuracy while keeping the computational cost under control has become the most significant component of detecting DDoS cyber threats. In order to properly defend the targeted network or system, it is critical to first determine the sort of DDoS assault that has been launched against it. A number of ensemble classification techniques are presented in this paper, which combine the performance of various algorithms. They are then compared to existing Machine Learning Algorithms in terms of their effectiveness in detecting different types of DDoS attacks using accuracy, F1 scores, and ROC curves. The results shows high accuracy and good performance
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.