Community Detection In Sparse Networks
Main Article Content
Abstract
Spectral methods in which they are based on matrix eigenvectors are widely
used in network data analysis, especially for community detection. These
classical approaches are based on graph associated matrix (adjacency matrix)
and related matrices, nevertheless go wrong with sparse networks, which they
have a lot of interest in practice. The spectrum of the non-backtracking
matrix, an alternate matrix representation of a network that shows a behavior
in the sparse limit, has recently been presented as a solution to this problem.
However, the use of this matrix was limited for a specified number of
communities. We are presenting a matrix for the graph and showing that it
can be using for different number of communities.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.