Time Series Analysis Of COVID-19 Occurrence In Different States Of India: A Periodic Regression Analysis
Main Article Content
Abstract
COVID-19 is the deadliest pandemic, with over 18.2 million people infected with the SARS-CoV-2 virus by August 2, 2021 resulting in human deaths and economic losses. A number of countries have formulated control measures in order to prevent the spread of the virus. However, it is unknown when the outbreak will subside in different countries around the world. The role of predicting the COVID-19 trend is extremely difficult. Indian government has made disease outbreak analysis a priority in order to implement necessary healthcare measures to reduce the impact of this deadly pandemic on human health and country’s economics. The time series data for COVID-19 disease was collected from the website www.covid19india.org and were analyzed using a periodic regression model using the data from 22nd Janaury March 2020 to 01st Febraury 2021 the estimated number of cases until 27 July, 2021 was predicted to develop a stochastic model using periodic regression and were documented in top 10 highly infected states in India. The analysis revealed a increasing pattern for the number of reporting cases in the early days of prediction and decreasing trend for the number of reporting cases in the later days of prediction, which could decrease in future days in Karnataka, West Bengal, Uttar Pradesh, Telangana, Bihar and Haryana states. However, in Madhya Pradesh, Andhra Pradesh, Maharashtra and Tamil Nadu states showed a rapid phase of rise in disease incidence, which is likely to infect a larger population and suggests the disease's pandemic existence over a duration. Our model emphasizes the importance of ongoing and continuous efforts that are in place in all states to minimize occurrence of new cases of infections, so as to potentially improving India's economic wealth with the available resources.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.