Similarity-Based Neural Network Model for FBIR System ofOptical Satellite Image Quality Assessment
Main Article Content
Abstract
Satellite images are an important tool of Earth observation, as well as for observing man-made and natural resources. Multiple satellites are in space, providing numerous images on a daily/weekly basis for land surface interpretation, study, and various type of monitoring. Satellite images are a significant source of evidence and information used in a variety of areas, including environmental impact measurement, agricultural tracking, woodland survey, and identification of changes in urban areas. It is still a difficult task to retrieve a noise-free image from an image repository and extract meaningful information from an image, especially optical satellite images that may be weather effected, which are less capable to generate efficient and accurate results for earth surface monitoring particularly when the image contains multiple semantic information. Many researchers have developed different neural network models for similarity measurement that are capable of finding similarity between two patterns in the literature, but finding similarity between two satellite images is a difficult challenge since satellite images relate to normal datasets. In this paper, a similarity-based neural network (SBNN) model for the FBIR system has been developed. The SBNN model is a replacement forthe KNN algorithm, which was proposed in our previous study. The SBNN model calculates the image band similarity between the required image and the referenced image, and based on band similarity, the system predicts that the image is suitable for post-processing or not. The improved version of the FBIR system (i.e. FBIR with SBNN model) allows the retrievalof pre-processed band data of the image as per user requirement. The proposed FBIR system minimizes the downloading time, wastage of the internet, and the most important thing is the time of the user that is consumed during the pre-processing of raw images. The main advantage of SBNN based FBIR systemis that there will not be a need to download a complete image (i.e. composite image of all the respective bands), user can select the required individual band image and can easily download it through a user-friendly GUI. In future, SBNN based FBIR model can be very beneficent for the scientist and environmentalist to conduct quick case studies for urban heat mapping, precision agriculture, coal fire monitoring and forest fire mapping, etc..
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.