Comparison of Artificial Neural Network and Multiple Regression on Favoured Halal Destination
Main Article Content
Abstract
Relationship between assumed variables has been redundantly carried out by multiple regression analysis and correlation analysis. The application of unconventional ways to learn deep into human minds to gauge the behavior and intentions will increase the weight of reasonably accurate prediction. Thus this study aims to empirically verify the prediction with the support of artificial neural network and multiple regressions. The quality of the neural network is often collated in terms of estimated error. By distinction non-linear and non-parametric procedures are not simple to implement unlike artificial neural network’s applicability without manipulative assumptions. Results show that the coefficient of determination driven from multiple regression analysis is able to explain dependent variables with the support of the input variables. Despite this the error for artificial neural network is lower compared to multiple regression analysis. Thus, the predictive performance through artificial neural network is considered to be stronger approach compared to multiple regression analysis. As global tourism industry is ever more dynamic business, recognizing the needs, desires, demands and behaviors of international travelers plays a vital part in the growth of destinations. Therefore, the primary objective of this investigation is to predict the outcomes of halal destination by comparing multiple regression and artificial neural network. Outcome reflects that artificial neural network prediction is firmer compared to multiple regression analysis.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.