Convolutional Neural Networks Based Optimal Management of Agricultural Crops
Main Article Content
Abstract
Given the importance of agriculture, food supply, and food security, as well as population growth, the use of state-of-the-art technologies to increase agricultural productivity and mechanization with the least amount of loss and damage to crops and human beings has been highly prioritized. A great body of research has been conducted on and many solutions have been adopted for agricultural mechanization and reduced and optimized consumption of the available herbicides. Using convolutional neural networks and deep learning, this study sought to increase the accuracy of detecting grapes in the vineyard and of weeds in fields. For this purpose, the VGG16 Standard was utilized. The results indicated a 99% learning accuracy in the learning section for grape and weed detection. The validation and the final accuracy of detection for the machine designed was 63% for grapes detection and 95% for weeds. It was also demonstrated that the proposed method outperformed the KNN, decision tree, and random forest algorithms compared to the other algorithms and methods.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.