Machine Learning Approach to Select Optimal Task Scheduling Algorithm in Cloud
Main Article Content
Abstract
The flexibility provided by the cloud service provider at reduced cost popularized the cloud tremendously. The cloud service provider must schedule the incoming requests dynamically. In a cloud environment tasks must be scheduled such that proper resource utilization is achieved. Hence task scheduling plays a significant role in the functionality and performance of cloud computing systems. While there exist many approaches for boosting the task scheduling in the cloud, it is still an unresolved issue. In this proposed framework we attempt to optimize the usage of cloud computing resources by applying machine learning techniques. The new proposed framework dynamically selects the scheduling algorithm for the incoming request rather than arbitrary assigning a task to the scheduling algorithm. The scheduling algorithm is predicted dynamically using a neural network which is the best for the incoming request. The proposed framework considers scheduling parameters namely cost, throughput, makespan and degree of imbalance. The algorithms chosen for scheduling are 1) MET 2) MCT 3) Sufferage 4)Min-min 5) Min-mean 6) Min-var. The framework includes 4 neural networks to predict the best algorithm for each scheduling parameters considered for optimization. PCA algorithm is used for extracting relevant features from the input data set. The proposed framework shows the scope for the overall system performance by dynamically selecting precise scheduling algorithms for each incoming request from the user.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.