Quantile Normalized Neighbor Combinatorial Machine Learning Based Recommendation in Digital Marketing
Main Article Content
Abstract
The scientific advancement of the contemporary years has set industries on the move. The advancement in marketing has led to the point where reshaping to digital movements is essential. Even though it appears to be a plunge for marketers, as a matter of fact, all mechanized applications and systems that are designed on the basis of artificial intelligence only reduces the complication of conventional targeting and customization procedure. In several applications, the platforms utilized for online promotion carry algorithms for recognizing the best combinations whereas in other cases, the business establishments or institutions involving digital marketing take advantage to design and execute in-house personalized arrangements. As a case study, a method called, Quantile Normalized Neighbor Combinatorial Learning-based Recommendation (QNNCL-R) is applied for generating new leads that will ultimately become customers (i.e., promoting student higher education to admission branding in our scenario) via twitter dataset. The data obtained from the twitter dataset (i.e., higher education) is fed to the recommendationsystem. Then, the relevant set of features and event labels (i.e., tweets) is selected by Quantile Normalized Chi-square Feature selectionand a Neighbor Combinatorial Learning-based Recommendation algorithm with the best performance is selected for the recommendation process for higher education. QNNCL-R method is compared with other algorithms and indicating that QNNCL-R method performs better than other methods.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.