DDLS: Distributed Deep Learning Systems: A Review
Main Article Content
Abstract
The clustered deep learning systems practice deep neural model networks with a cluster pooled resources aid. Distributed profound learning systems engineers should make multiple choices to process their diverse workloads successfully in their selected environment. Combined with the cluster bandwidth constraints, the abundance of GPU-based deep learning, the ever-greater size of data sets, and deep neural network models would entail developing high-quality models by distributed, profound learning systems designers. Because of their extensive lists of features and architectural deviations, it is not easy to compare distributed deep learning systems side by side. By examining the overall properties of deep learning models and how these workloads can be expanded into a cluster to carry out collective algorithm testing, the fundamental principles at work are shed when training a deep neural network in an isolated machinery cluster. Different techniques been addressed which are used by today's distributed deep learning systems and discuss their consequences. In order to conceptualize and compare deep-level structures, different methods have been developed by previous works to deep-level systems spread DDLS. Indeed, this paper addressed them to be more clearance for the readers.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.