Optimal Parameter Selection for DWT based PCG Denoising
Main Article Content
Abstract
Analysis of PCG signals helps in diagnosis of cardio vascular disorder non-invasively. PCG signals are non-stationery in nature and hence time-frequency analysis of PCG is the most suitable means for analysis to determine the basic features of it. However, the PCG signals need to be denoised before feature extraction process and DWT proves to be most suitable for this purpose. During acquisition of HSS technically known as PCG various types of noises and artifacts contaminate the signal of interest. Hence denoising of the signal is inevitable before proceeding for diagnosis. DWT has been proved to be a powerful and handy tool along with thresholding for this purpose. However, the main challenge lies in the fact of selection of the suitable MWT with required number of DL and the type of thresholding function. The present work deals with the optimization of the selection process using varieties of MWT with varying DL and thresholding functions. Rigorous experiments have been conducted using codes in MATLAB environment to select the suitable MWT, DL and thresholding function. After optimization, the selected MWT, DL and Thresholding function have been applied on 22 PCG signals obtained from open data source and the performance of the process has been measured in terms of SNR and RMSE. It has been observed from the extensive experiments using different combination that sym20 wavelet with 10 decomposition level along with Bayesian Soft thresholding function provide the best result in denoising the applied PCG signals. The database used is that of MHSDB available at www.med.umich.edu/Irc/psb/heartsounds/index.htm provided by the University of Michigan Health System.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.