Dp-Rnn: Type Ii Diabetic Prediction Using Gkfcm And Rnn
Main Article Content
Abstract
Diabetes is a form of metabolic disorder marked by elevated persistent blood glucose (BG), leading to several severe problems in the long term. Continuous monitoring and prediction of BG concentration are needed to help diabetic patients maintain their wellbeing. If insulin is minimized, machine learning models, such as CNN, RNN, and others, are standard data-driven BG prediction solutions. They use several patients' BG data to train the prediction model. However, all of the training data with the same parameters can not accurately capture BG fluctuation characteristics. Motivated by the possibility that various subgroups of diabetic patients have different BG fluctuation trends, we suggest a new BG prediction method called DP-RNN focused on recurrent neural networks (RNN) and incorporates a clustering pre-process using GKFCM. In terms of BG estimation precision, numerical finding shows that the suggested DP-RNN methodology uses more than one cluster for type II diabetes and outperforms Logistic regression (LR) and other CNN approaches.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.