Malware Classification Using Xgboost With Vote Based Backward Feature Elimination Technique
Main Article Content
Abstract
Malware is one of the most popular threats today, and it is rapidly becoming a significant threat to Internet security. Malware is computer code written by cyber criminals with the intent of causing extensive harm to data and infrastructure or gaining unauthorized access to a network. There are several methods are employed to detect the malware with signature based and behaviour based techniques. Several machine learning techniques are used for classification of malware files. The traditional techniques are not efficient to detect the malware. To efficiently classify the malware, we proposed the XGB with Vote based Backward Feature Elimination technique (XGB-VBFE) which selects the optimal features to build the model and classifies the files with higher accuracy. The performance of the proposed system is compared with other machine learning algorithms such as SVM and Random Forest and proved to be better in accuracy, precision and recall. The proposed XGB-VBFE classifies the files with the accuracy of 99.50%, precision 0.99 and recall 0.96.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.