An Insight on Image Annotation Approaches and their Performances
Main Article Content
Abstract
Image Annotation (IA) followed by Image Retrieval (IR) plays a significant role in today’s computer vision world. As the manual IA is a tedious and time-consuming process, the automated IA became very predominant in the computer vision applications. IA deals with the assigning of meaningful labels to various objects in the image. The objective of this article is to represent the various IA approaches adopted in the last decade. Observation of the existing IA methods and their performances leads to identify the pitfalls the existing approaches. Few approaches used standard datasets and images downloaded from internet to evaluate the performance of the Image Annotation.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.