Traffic Flow Prediction Using An Improved Fuzzy Convolutional LSTM Algorithm
Main Article Content
Abstract
Intelligent transportation systems (ITS), is producing large amounts of data. The generated data is used for designing smart transportation systems. These raw data must be converted to valuable information for transportation planning and management. Deep learning algorithms have a variety of applications. In this paper, an improved fuzzy convolutional approach is proposed. The proposed model is designed to learn traffic flow features layer by layer through a supervised learning, non-parametric algorithm. The traffic information has been captured from UCI machine learning repository and experimented with a proposed algorithm to capture traffic flow information.The proposed algorithm is evaluated against prediction metrics such as root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE).The proposed method stands out other existing algorithms and has superior performance in traffic flow forecasting.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.