Ensemble bat algorithm based on Hyper heuristic approach for solving unconstrained optimization problems
Main Article Content
Abstract
Abstract Maintaining convergence and diversification in solving optimization is one of the most important challenges facing metaheuristic algorithms in general and the bat algorithm in particular. Many researchers have suggested some improvements to preserve the ability of the algorithm to find good solutions in a timely manner and also to move away as much as possible from landing on the local optimization zone. In this paper, a hyper-heuristic method was proposed to incorporate the behavior of three optimized algorithms from the bat algorithm. The method is based on the distribution of a specific implementation probability for each used algorithm and then updating this probability iteratively according to the results of each algorithm, and then we use random selection to determine the algorithm used in the current iteration. Some nonlinear models proposed in CEC2005 used to compare the efficiency of the proposed algorithm and compare its results with some state-of-the-art algorithms.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.