Predicting a Risk of Diabetes at Early Stage using Machine Learning Approach
Main Article Content
Abstract
Diabetes, known also as Diabetes mellitus, is a prolonged disease that distresses a way body uses to take up sugar or glucose. It can be described as a condition occurs when the blood sugar of a body is too high. The cases of diabetes are rapidly raising in low- and middle-income countries as compare to high income countries. Advancement in the field of Information and Communication Technology (ICT) are revolutionizing many sectors including health care and medical technologies. It plays a critical role in improvising services offered to patients and hospitals. Machine learning is a field of Artificial Intelligence that makes computer system to learn from data, identify the patterns and take decisions without human intervention. Machine learning can be applied on medical datasets to detect and diagnose diseases in an effective and accurate manner. This research focuses on applying machine learning classifiers on the publicly available dataset that contains signs and a symptom of either a person is diabetic or non-diabetic. For that, a dataset for early-stage diabetes risk prediction is acquired from UCI machine learning repository. The well-known machine learning classifiers i.e., Naive Byes, Random Forest, Support Vector Machine and Multilayer Perceptron are experimented on the dataset and the results are analysed. Finally, the result shows that the Random Forest provides the highest values i.e. 0.975 for precision, recall and F-measure respectively. Multiplayer perceptron also works well with 0.96 precision value, 0.963 recall value and 0.964 F-measure value, respectively.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.