Using AI Techniques To Predict Property Crime Rates - A Comparison And Analysis
Main Article Content
Abstract
Property crime is an increasing concern worldwide and one which causes trauma to victims and puts pressure on law enforcement agencies. One essential weapon in the fight against property crime is that of effective forecasting which helps law enforcement task forces to put in place effective preventative measures. Researchers and law enforcers now choose to harness the power of modern technology, namely artificial intelligence, to help them to predict property crime rates and to therefore create proactive preventative solutions. The objective of this study is to perform a comparative analysis on three different artificial intelligence techniques which are; Random Forest Classifier (RFC), Gradient Tree Boosting (GTB) and Support Vector Regression (SVR). These techniques are applied to four separate crime types in the USA in order to compare and contrast in terms of quantitative measurement of error. The results of the study show that GTB is the most effective method as it produced the lowest error measurements and the highest level of forecast accuracy in comparison to RFC and SVR
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.