Performance Analysis of Object Detection Framework: Evolution from SIFT to Mask R - CNN
Main Article Content
Abstract
In a near of wide spread technological change that has givena positive impact to the society andhelpedinbuildingauser-friendly environment, object detection framework, an importantpart of Computer Vision (CV) plays a vital role. Starting fromasimpleautomaticattendancesystemforstudentsusingfacedetection, recognizing the presence of tumors in medical images,helping with automatic surveillance of cctv cameras to identifypeoplewhobreakstrafficrulescausingroadaccidentstobeingthecentral mechanism behind self-driving cars, object detection haswide range of applications and assist building an easy to cope withsmart environments. This in turn urges the need to evaluate theperformanceofthetechniquesbehindtheseframeworks.Thecentralideabehindthemodern-dayobjectdetectionandclassification is Convolutional Neural Network (CNN) which triesto mimic the occipital lobe, the visual cortex of the human brain.CNNhaswiderangeofvariationsandhascomethroughalongwaystarting from basic CV techniques like Scale Invariant FeatureTransform(SIFT),HistogramsofOrientedGradientsn(HOG)tillRegionbasedCNN’s(R-CNN).Theperformanceofeachandeverymethodthathas led throughthe evolutionofobjectdetectionmethods, its advantages and the disadvantages which has pavedway for the innovation of next technique has been discussed andrepresentedindetail.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.