Machine Learning Algorithms for Detection: A Survey and Classification
Main Article Content
Abstract
There is an enormous amount of data being dealt with by the medical field on a daily basis. Using a conventional method for handling data can affect the accuracy of the results. Early recognition of the disease is crucial for the analysis of patient medicines and specialists. The objective of this paper is to provide a comprehensive review of the techniques used in disease detection. Machine learning algorithms can be used to find out facts in medical research, particularly disease prediction. Machine learning algorithms such as Support vector machine [SVM], Decision trees, Bayes classifiers, K-Nearest Neighbours [KNN] Ensemble classifier techniques, etc. are used to determine different ailments. The use of machine learning algorithms can lead to fast and high accuracy prediction of diseases. This research paper analyses how machine learning techniques and algorithms are used to predict different diseases and their types. This paper provides an extensive survey of the machine learning techniques used for the prediction of chronic kidney disease, liver disease, haematological diseases, Alzheimer’s disease, and urinary tract infections.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.