A Survey of Data Driven Methodologies for Mitigating Cyber Attack in Online Environment
Main Article Content
Abstract
A large number of users use social networking as a platform for sharing their official and personal information. A spammer will utilize these social platforms for their benefit by flooding malicious links, unwanted information and others. In social networking platform, detecting a spammer is a critical and challenging tasks. For the detection and defending of cyber-attacks analysis of social and internet traffic is fundamental job. Automated approaches that use machine learning are replacing traditional approaches for detection of spammers. This revolution has speeded up by the large datasets that takes the help machine-learning models which gives exceptional performance. In data-driven prototype environment, a review on cyber traffic in social networks and Internet is presented by considering the common parameters like correlation, collective indication, similarity. This work also gives an analysis on classification of network applications or network host and Tweets or users by sharing the goals of security. This article also gives a new methodology of research for data-driven cyber security and its application in social network and Internet traffic study.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.