Prediction of Diabetes in Females of Pima Indian Heritage: A Complete Supervised Learning Approach
Main Article Content
Abstract
Nowadays, diabetes is a common disease that affects millions of people over the world, and women are mostly affected by this disease. Recent healthcare studies have applied various innovative and advanced technologies to diagnose people and predict their disease based on clinical data. One of such technologies is machine learning (ML) in which diagnosis and prediction can be made more accurately. In this paper, the designed model predicts the diabetes of females of Pima Indians heritage by taking the clinical dataset. Here, this problem is considered as a binary classification problem. Therefore, supervised learning algorithms have been used, such as classification tree (CT), support vector machine (SVM), k-Nearest Neighbour (k-NN), Naïve Bayes (NB), Random Forest (RF), Neural Network (NN), AdaBoost (AB) and Logistic Regression (LR). We use the female Pima Indians diabetic dataset from Kaggle and UCI data repository and k-fold cross-validation to carry out the process of training and testing. We determine the area under the curve (AUC), classification accuracy (CA), F1, precision and recall results of all the supervised learning algorithms and compare them to determine the best algorithm that is suitable for prediction. For this, we use the Orange 3.24.1 open-source platform to generate the results, which uses Python open-source libraries. From the results, it is concluded that the LR performs better in comparison to other algorithms
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.