Oppositional Butterfly Optimization Algorithm with Multilayer Perceptron for Medical Data Classification
Main Article Content
Abstract
Medical data classification can be assumed to be a crucial process in the domain of medical informatics. Generally, medical data comprises a set of medical records and literature which are considered as the essential healthcare data sources. But the existence of medical data includes complicated medical vocabulary and medical metrics makes the classification process challenging. Though several models are available in the literature, there is still needed to improve the classification performance. In this view, this paper devises a novel oppositional based learning with butterfly optimization algorithm (OBLBOA)and multilayer perceptron (MLP) called OBLBOA-MLP for medical data classification. The presented OBLBOA-MLP model involves three stages of operation such as preprocessing, classification, and parameter tuning. Primarily, data preprocessing is carried out to remove the unwanted data and raise the data quality to a certain extension. Besides, MLP model is applied as a classifier to determine the existence of the diseases. In addition, OBLBOA is employed for the hyperparameter optimization of the MLP model. The application of OBL helps to increase the performance of the BOA. A detailed set of simulation analysis was performed to determine the appropriate detection results of the OBLBOA-MLP model. The obtained experimental values pointed out the improved classification performance by attaining a higher accuracy of 98.23% and 92.67% on the applied CKD and skin disease dataset respectively.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.