A Novel Framework For Automatic Detection Of Plant Leaf Disease Using 2d-Deep Convolutional Neural Network Architecture
Main Article Content
Abstract
The economy of a country largely depends on its agricultural productivity. Hence, identification of plant leaf diseases plays a vital role in the field of agriculture. In this research, we propose a novel framework for the automatic detection of plant leaf disease based on Deep Convolutional Neural Network (DCNN) architecture. The proposed framework involves steps like image restoration, enhancement, clustering, thresholding and classification. The image restoration is performed using a novel filter called 2D Adaptive Hybrid Bilateral Anisotropic Diffusion Filter (2D–AHBAD). This filter is used for the elimination of various noise such as salt and pepper noise, Gaussian noise, random noise, thermal noise, speckle noise etc. Image enhancement is done using Edge Preservation–Modified Histogram Contrast Brightness Equalization (EP-MHCBE) algorithm. The enhanced images are then segmented using clustering and thresholding algorithms. A new technique called Hybrid Fast Fuzzy C Means Improved Expectation Maximization (HFFCM IEM) Clustering technique was used for the computation of clusters. The generated clusters are then segmented based on the Iterative Mean Shift Thresholding (IMST) algorithm. The segmented images are classified using DCNN architecture. A total of 2000 images are used in this framework out of which 1600 images were utilized for training the DCNN architecture. The remaining 400 images were used for testing. The leaf images are categorized into four categories namely, normal, mild, moderate and severe. It was inferred that the proposed AHBAD image restoration algorithm achieved a high PSNR of 54 and very low MSE of 0.0039. Similarly, the proposed DCNN classification system attained a high classification accuracy of 92.25%.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.