Gender Classification Based on Fingerprint Analysis
Main Article Content
Abstract
Gender classification plays an active role in several applications such as biometrics, criminology,surveillance, human computer interaction, commercial profiling. Though bbiometric traits such as face, gait, iris and hand shape are used for gender classification in the past, majority of the work is based on face as it contains more prominent features than others. In this paper we have analyzed fingerprints for gender classification with a hope that it has great potential for future research. We have employed a three convolutional layer CNN with rectified linear (ReLu) and tanh activation functions on NIST database which contains a set of 4000 images and achieved 99% accuracy. Performance of the proposed system demonstrated that fingerprints contains vital features to discriminate gender of a person.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.