An Intelligent Clustering Technique for Analysing the Performance of Students during Lockdown Period of Covid-19
Main Article Content
Abstract
Corona virus or simply Corona is the current leading pandemic of the world. It has affected students and their in education in higher numbers than any other sector putting them into a depression. Hence this research attempts to suggest solutions for reducing depression amongst students amidst the pandemic. This work proposes ESVMs (Enhanced Support Vector Machines) model for its predictions. Identifying student performances is complex issue as the numbers are voluminous and hence the objective of this research is to assess student performance prediction model by using an efficient clustering method. Missing values and irrelevant data are resolved in this work using SCCs (Statistical correlation Coefficients) which work on subject wise manner or student wise data. This work also provides a novel solution for data pre-processing. IFCM (Improved Fuzzy C-means clustering) proposed in this work identifies high quality clusters with robustness. Further, the use of PSO (Particle Swarm Optimization) in feature selections improves its efficiency of the given data. Classifications are executed by the proposed ESVMs which predicts student's grade with accuracy. The evaluation results of this study improve classification accuracy significantly when compared to existing prediction models.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.