Comparative Analysis Of Classification Techniques Used In Machine Learning As Applied On A Three Phase Long Transmission Line System For Fault Prediction Using Python
Main Article Content
Abstract
The recent developments in the technology made by organizations have led to a quicker, simpler and a very accurate data analysis. The use of machine learning techniques have been exponentially increasing in the analysis of data in different fields ranging from medicine to defense, education, finance and energy applications. The machine learning techniques reduce further meaningful information processed by data mining. These significant and meaningful information help organizations to establish their future policies to get more advantages in terms of time and cost. In this paper the author has tried to present the best classification method by having a comparative analysis on various methods such as Logistic Regression, Support Vector Machine, Naïve Bayes and K-Nearest Neighbors etc. for a particular use case i.e. prediction and classification of transmission line faults. The author has made this analysis by utilizing both Python and MATLAB Simulink. This will surely help the researchers to know details such as accuracy,f1 score, mean square error etc of various classification methods.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.