Comparative Thresholding Analysis for Keratoconus Detection using Probability Density Function
Main Article Content
Abstract
Generally the keratoconus indicates the condition in which the human eye’s cornea region unable to hold its round shapes. In cornea, the intensity points around the boundary have drawbacks in predicting the irregular shape. The proposed method uses the techniques of intensity wise classification, edge detection method using the Sobel detector and the density based threholding. The feature vectors like test image and trained image are classified with the Probability Density Function (PDF). The keratoconus parameters to be model using the prediction model and the normal eye, the keratoconus outputs are classified using Probability Density Function. The outputs of the keratoconus are compared with the help of machine learning techniques.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.