Prediction Of Rainfall With A Machine Learning Approach
Main Article Content
Abstract
Machine Learning (ML) is a versatile method for working with complicated structures. This thesis focuses on creating a machine learning-based system for forecasting rainfall. The proposed ensemble model is provided meteorological data correlated with rainfall variables as an input. We are gathering data from IMD for this work (Indian Meteorological department). Validation and verification was carried out using ensemble learning with Support Vector Regression and Random Forest model (SVR-RF). Validation is conducted using usable measures from a meteorological department over a certain area, which aids in predicting the likelihood of rainfall. As a result, a novel solution is built to improve the system's efficiency by combining the promise of SVR-RF with the accuracy of rainfall prediction. By calculating the precipitation characteristics, the recorded data is used to forecast rainfall with continuous observations over a given area. The proposed model aids in the establishment of a partnership between rainfall variables and other similar variables, which benefits the proposed SVR-RF model's potential. Mean Absolute Error (MAE), Root Mean Square (RMS), and classification precision (day and monthly basis) are the output metrics used in the simulation. The proposed model has the ability to outperform current prediction models. The proposed model predicts rainfall effectively using a variety of measures such as temperature, precipitation, and so on. This model increases machine efficiency thus lowering error rates.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.