Simulating Human-like Navigation in Urban Transportation Environments with Multi-Agent Deep (Inverse) Reinforcement Learning
Main Article Content
Abstract
This paper focuses on an approach that uses two methodologies: Maximum Entropy Inverse Reinforcement Learning and Multi-Agent Deep reinforcement learning. It focuses on each method in a adequately profound manner. The nature of data is also specified and it is also displayed how it is prepared it to suit their purpose. The use of Keras as one of their tools to construct modest deep neural networks. For results, the relation between the outcomes of each method with proper explanation is configured. A brief study of the direction in which the approach can be led forward in the future is analyzed.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.