An Intelligent Smart Ranked Feature Construction Analysis based on Clustering High Dimensional Data Streams
Main Article Content
Abstract
Artificial Intelligence is nowadays successfully applied to massive data sets assembled from various areas. One of the noteworthy challenges in applying AI methodologies to massive data sets is the way by which to effectively use accessible computational resources when building prescient and inferential models, while utilizing data in a measurably optimal manner. Random projections have been dynamically received for a differing set of tasks in AI including dimensional decrease. One explicit line of research on this point has analyzed the use of quantization rebutting in projection with the point of additional data pressure. We present a fundamental calculation, named double random projection, which uses the double solution of the low-dimensional improvement issue to recuperate the ideal solution for the first issue.. Our Hypothetical Examination (HE) shows that with a high probability, the proposed calculation can accurately recoup the ideal solution for the first issue, given that the data lattice is (roughly) low-position and ideal solution is (around) inadequate.. We further exhibit that the proposed calculation can be applied iteratively to diminishing the exponentially
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.