An Analysis of High School Student's Understanding and Reasoning of Average Concept
Main Article Content
Abstract
The aim of this study is to identify high school student's understanding of average concept and the reasoning types they appeal to solve average problems. The case study approach was used in this study and the participants were selected by purposeful sampling. The participants consisted of five 9th grade and four 10th grade students, studying at a high school in Istanbul. In order to identify student's understanding of average, a test consisting of 5 open-ended problems were used and semi-structured interviews were held with each of the students. The data were analyzed by thematic analysis approach. For data analysis, framework proposed by Mokros and Russel (1995) was used to determine student's understanding of average and Lithner's (2008) framework was used to reveal their reasoning types. Results showed that students mostly understood average as mathematical point of balance. Creative mathematically founded reasoning and algorithmic reasoning was used the most. Creative reasoning is effective in reaching the right answer. In solutions where creative reasoning is used, students generally also have the idea of representativeness. The type of problem influences the reasoning process. Inadequacy of student's prior mathematics knowledge hinders both their understanding of the average and their reasoning skills.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.